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Using the Pearson correlation coefficient to constructing functional brain network has 
been evidenced to be an effective means to diagnose different stages of mild cognitive 
impairment (MCI) disease. In this study, we investigated the efficacy of a classification 
framework to distinguish early mild cognitive impairment (EMCI) from late mild cognitive 
impairment (LMCI) by using the effective features derived from functional brain network 
of three frequency bands (full-band: 0.01–0.08 Hz; slow-4: 0.027–0.08 Hz; slow-5: 0.01–
0.027 Hz) at Rest. Graphic theory was performed to calculate and analyze the relationship 
between changes in network connectivity. Subsequently, three different algorithms 
[minimal redundancy maximal relevance (mRMR), sparse linear regression feature selection 
algorithm based on stationary selection (SS-LR), and Fisher Score (FS)] were applied to 
select the features of network attributes, respectively. Finally, we used the support vector 
machine (SVM) with nested cross validation to classify the samples into two categories to 
obtain unbiased results. Our results showed that the global efficiency, the local efficiency, 
and the average clustering coefficient were significantly higher in the slow-5 band for the 
LMCI–EMCI comparison, while the characteristic path length was significantly longer 
under most threshold values. The classification results showed that the features selected 
by the mRMR algorithm have higher classification performance than those selected by the 
SS-LR and FS algorithms. The classification results obtained by using mRMR algorithm in 
slow-5 band are the best, with 83.87% accuracy (ACC), 86.21% sensitivity (SEN), 81.21% 
specificity (SPE), and the area under receiver operating characteristic curve (AUC) of 0.905. 
The present results suggest that the method we proposed could effectively help diagnose 
MCI disease in clinic and predict its conversion to Alzheimer’s disease at an early stage.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is clinically characterized 
by dementia and cognitive decline (1). According to the World Alzheimer’s Disease Report in recent 
years (2, 3), about 35.6 million people suffered from dementia in 2010, and global dementia care costs 
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more than 600 billion US dollars or approximately 1% of the global 
GDP. Mild cognitive impairment (MCI), commonly characterized 
by slight cognitive deficits but largely intact activities of daily 
living (4, 5), is a transitional stage between the healthy aging and 
dementia that can be divided into EMCI and LMCI, according to 
extent of episodic memory impairment (6). Research has shown 
that individuals with MCI tend to progress to AD at a rate of 
approximately 10–15% per year (7). Jessen et al. (8) showed that 
the risk of LMCI conversion to AD is higher than that of EMCI. 
Identifying potentially high-sensitivity diagnostic markers that 
change with disease progression may assist the physician in making 
a diagnosis. If it is found at an early stage of MCI, patients can 
reduced the number of AD incidence by nearly one-third through 
rehabilitation exercises and medication (9). Unfortunately, sensitive 
markers vary with disease progression (6), and there are currently 
no definitive diagnostic biomarkers and effective treatments for 
AD (10). Thus, early detection of EMCI individuals increasingly 
attaches clinical importance to potentially delaying or preventing 
the transition from EMCI to LMCI. Many experts study the early 
diagnosis of AD diseases from the aspects of neuropsychology, 
chemistry, and medical imaging. In clinical practice, doctors use 
the neuropsychological scale to diagnose and treat patients because 
of their simple operation, less time, and doubts. MCI patients have 
a certain sensitivity when they are initially tested and are widely 
used by clinicians (11), but they are subjectively influenced by 
individuals. Individual differences are relatively large, and other 
diagnostic methods need to be combined to give the final diagnosis. 
In biochemistry, the levels of Aβ and p-tau proteins in CSF are 
important biomarkers (12). Studies have shown that the content 
of amyloid has increased before clinical symptoms appear, can be 
used for early prediction of clinical AD disease, but is not sensitive 
(13). The content of p-tau protein in AD patients is significantly 
increased, with high sensitivity and specificity, and has certain 
reference value in clinical diagnosis (14), but the detection of this 
index is traumatic, patients have certain rejection psychology, and 
clinical operation is more difficult. Compared with these methods, 
Hinrichs et al. (15) reported that clinical and imaging data [MRI 
and fludeoxyglucose (FDG-PET)] can be successfully combined to 
predict AD using machine-learning techniques. They found that 
the imaging modalities had a better performance in prediction of 
AD compared to clinical data. 

Neuroimaging research shows that MCI and AD patients 
have significant disruption compared with healthy control group 
in either the structural network or functional network (16–19). 
Several studies using the electroencephalogram (EEG) (20) and 
MRI (16, 17) have found abnormal clustering coefficients and 
characteristic path lengths in the brain networks of AD patients, 
implicating a loss of small-worldness attributes and disrupted 
whole brain organization network. Liu and Zhang (21) also used 
functional networks to detect betweenness centrality alteration 
in MCI and compared with AD group, showed decreased in the 
amygdala and rolandic operculum, and increased in the frontal 
gyrus, parietal gyrus, and medial temporal lobe. However, for 
MCI patients, changes in the brain are very subtle (19, 20); 
therefore, few studies have examined the characteristics of 
whole brain networks in different stages of MCI patients. Xiang 
and colleagues (22) used functional brain networks to study 

the abnormal brain connection in MCI and reported that the 
clustering coefficient in EMCI is higher than that of LMCI, 
while the average shortest path in LMCI is longer than that of 
EMCI. Although the difference was not significant, this method 
of analyzing functional brain network differences might provide 
an effective feature reference for the classification to distinguish 
EMCI from LMCI.

Recently, several studies have demonstrated that the 
features obtained from functional brain network measures and 
machine learning approach based on rs-fMRI contribute useful 
information for more accurate classification. Chen et al. (23) 
used large-scale network (LSN) analysis with an AUC of 95% 
to classify subjects with amnestic mild cognitive impairment 
(aMCI n = 15) and cognitively normal (CN n = 20) subjects. 
Challis et al. (24) proposed GP-LR models and employed 
SVM with 75% accuracy to distinguish healthy subjects from 
subjects with amnesic mild cognitive impairment. Khazaee and 
colleagues (25) used time series to construct brain function 
network, and linear SVM classifiers were used to classify AD and 
normal people, which obtained 100% classification accuracy. 
This could be due to the small sample size, and the single 
variable Fisher Score feature selection algorithm was used. 
In another study, they extracted both temporal variabilities 
and spatial variabilities from dynamic connectivity networks 
(DCNs) as features, and integrate them for classification by 
using manifold regularized multi-task feature learning and 
multi-kernel learning techniques. The method they proposed 
yields the accuracy of 78.8% for LMCI and EMCI classification 
(26). It has been shown that combination of the graph theory 
with machine learning approach on the basis of rs-fMRI can 
accurately classify patients with MCI, patients with AD, and 
normal subjects (22, 23). 

However, most of the studies pooled EMCI and LMCI 
groups into a single larger MCI group (24, 25, 27), and few 
studies investigated utility of rs-fMRI to distinguish two groups 
(25). In addition, Zuo et al. (28) divided the BOLD signal into 
five bands: full-band (0.01–0.08 Hz), slow-2 (0.0198–0.25 Hz), 
slow-3 (0.073–0.0198 Hz), slow-4 (0.027–0.073 Hz), and slow-5 
(0.01–0.027 Hz). Brain activity of MCI patients has significant 
differences in the posterior cingulate, hippocampus, and medial 
prefrontal regions in the slow-4 band and slow-5 band, and the 
classification of MCI by frequency division achieved a better 
classification result (29, 30). Thus, the combination of functional 
brain networks and frequency division provides a new direction 
for classifying MCI patients. 

In the current study, we aim to evaluate the efficacy of a 
classification framework to distinguish EMCI from LMCI 
by using the effective features derived from functional brain 
network of three frequency bands during Rest States. On the 
basis of classification result to find high-sensitivity features, we 
can better understand why sensitive markers in brain region 
vary with disease progression. We supposed that providing 
appropriate treatment and cognitive training for patients’ high-
sensitivity brain region at different stages of the disease might be 
preventing the progression of AD transformation.

Firstly, we preprocessed the signal and divided it into three 
frequency bands (full-band: 0.01–0.08 Hz; slow-4: 0.027–0.08 Hz; 
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slow-5: 0.01–0.027 Hz) at Rest. Then, we constructed functional 
brain network by calculating Pearson’s correlation coefficients 
between time series of all pairs of the brain regions and 
thresholded it to an undirected binary network. Several 
graph-theoretic parameters (global efficiency, local efficiency, 
characteristic path length, clustering coefficient, and small-
worldness) were selected to measure the characteristics of 
functional brain networks. Nodal characteristics were examined 
at a high discriminative range of sparsity from 8 to 20%. At the 
feature selection step, we employed three different algorithms 
for selecting optimal feature. To obtain unbiased results, 
support vector machine (SVM) classifiers with nested cross 
validation were used for classification. Finally, we compared 
the performances of three feature selection methods from 
classification results. We supposed that classification results may 
be influenced by different bands and the classification results 
may be the best in the slow-5 band.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). 

The demographic data of the datasets are listed in Table 1. 
This study included 33 early MCI (EMCI) patients (average 
age 71.69 years, 19 female) and 29 late MCI (LMCI) patients 
(average age 70.73 years, 13 female). In the ADNI project, MCI 
diagnostic criteria included 1) Mini-Mental State Examination 
(MMSE) scores between 24 and 30, 2) a memory complaint, 
objective memory loss measured by education adjusted scores 
on the Wechsler Memory Scale Logical Memory II, 3) a Clinical 
Dementia Rating (CDR) of 0.5, and 4) absence of significant levels 
of impairment in other cognitive domains, essentially preserved 
activities of daily living, and an absence of dementia. As shown 
in ADNI project, the MCI stage was divided into EMCI and 

LMCI. Detailed diagnostic criteria of EMCI and LMCI: Both 
are characterized by evidence of AD biomarker abnormalities, 
with EMCI patients showing milder cognitive deficits. In terms 
of neuropsychological criteria, EMCI is defined as a performance 
1–1.5 SD below the mean in one episodic memory test, identifying 
intermediate level of subtle memory impairment between normal 
cognition and MCI (31). In Table 1, we listed the p values of a 
Chi-Square test of gender and a two-sample t-test of age, CDR, 
and MMSE. We can see that gender, age, and MMSE have no 
signification differences for EMCI vs. LMCI.

Data Acquisition
All subjects underwent structural and functional MRI scanning 
on 3T Philips scanner according to the ADNI acquisition protocol 
(32). The structural images were acquired with T1-weighted 
magnetization prepared rapid acquisition gradient echo (MPRAGE) 
sequences (170 slices; TR = 3,000 ms; TE = 30 ms; matrix = 256 × 
256; voxel size = 1.2 × 1.0 × 1.0 mm3; flip angle = 9°). rs-fMRI scans 
were acquired with a T2*-weighted echo planar imaging (EPI) 
sequence with the following scanning parameters: 48 slices; TR = 
3,000 ms; TE= 30 ms; matrix = 64 × 64; voxel size = 3.313 × 3.313 × 
3.313 mm3; flip angle = 80°.

Preprocessing
rs-fMRI data preprocessing was performed using software 
MATLAB 2013a (MathWorks, Inc, https://www.mathworks.
com) and Data Processing Assistant for Resting-State Functional 
MR Imaging (DPARSF) (33) toolbox and Statistical Parametric 
Mapping software (SPM8) (34) package (http://www.fil.ion.ucl.
ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit (35) 
(REST; http://restfmri.net) for each subject. The preprocessing 
steps were as follows:

(1) For signal stabilization and to allow the participants to adapt 
to the environment, the first 10 EPI volumes of the fMRI 
images were discarded.

(2) Slice-timing correction for interleaved acquisition.
(3) Realignment for head movement compensation by using a 

six-parameter rigid-body spatial transformation. None of the 
subjects were excluded on the basis of the criterion with head 
motion limited to less than 2 mm or 2°.

(4) Each of structural MRI images was coregistered to the 
mean functional image by using a linear transformation, 
and the transformed structural images were segmented into 
grey matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) by using a unified segmentation algorithm. The 
functional images were normalization to Montreal Neurologic 
Institute (MNI) space. 

(5) Spatial smoothed with 6 mm FWHM Gaussian kernel and 
linear detrending were implemented as well.

(6) The global mean signal, six head motion parameters, CSF, 
and WM signals were also removed as nuisance covariates 
to reduce the effects of motion and non-neuronal blood 
oxygenation level-dependent (BOLD) fluctuations (36, 37). 

(7) Low frequency signals were divided into full-band (0.01–
0.08 Hz), slow-4 (0.027–0.08 Hz), and slow-5 (0.01–0.027 Hz). 

TABLE 1 | Demographic data of EMCI vs. LMCI subjects.

Variable  EMCI n=33  LMCI n=29 p-value

Gender (M/F) 14/19 16/13 0.316
Age 71.69±5.74 70.73±5.90 0.519
CDR 0.5 0.5 1
MMSE 28.12±1.65 27.17±2.20 0.058

Values represent mean ± SD. MMSE, Mini-Mental State Examination; CDR, Clinical 
Dementia Rating. Chi-Square test was used for gender comparison. Two-sample t-test 
was used for age, CDR, and MMSE comparison. P > 0.05 indicates two groups have 
no significant differences.
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Functional Network Construction
The nodes of the brain network were defined by parcellation of 
the whole brain into 90 distinct regions using the automated 
anatomical labeling (AAL) atlas, which is a gross functional 
subdivision of the cortex (38). The time series of voxels within 
each of the 90 ROIs was averaged, and the resulting signal was 
used as the node. The edges were constructed by calculating 
Pearson’s correlation coefficients between time series of all 
pairs of the brain regions. We applied Fisher’s r-to-z transform 
on raw undirected connectivity matrix of the three bands to 
improve the normality of the partial correlation coefficients 
(18, 39). By definition, this matrix is symmetric with a zero 
diagonal (no self-connections) (40). To determine the available 
edges, each individual’s brain network sparsity is thresholded 
as a binary matrix, where the edges are 1 if the weights of the 
two ROIs are larger than a given threshold, and 0 otherwise. 
The threshold represents the network connection cost, defined 
as the ratio of the suprathreshold connections relative to the 
total possible number of connections in the network (41). 
There is no straightforward rule for the definition of the 
single sparseness threshold, and different sparsenesses lead 
to different experimental results (17, 37). In this study, each 
network was examined for the range of costs from 8% to 20%, at 
1% intervals. We performed a search over different thresholds 
to find the optimal threshold value (42). In order to generate 
effective network characteristics, statistically significant 
differences in network parameters between the two groups of 
patients under different sparsity levels were calculated.

Graph Theory Parameters
All graph theory parameters were computed and analyzed using 
Matlab 2013a (MathWorks, Inc) scripts and matlab_bgl (https://
github.com/dgleich/matlab-bgl)

The undirected connectivity matrix in three bands for each 
subject was used to calculate different graph metrics. To obtain 
efficient features and avoid feature largely redundancy, we first 
computed five global graph measures on the undirected graphs. 
The global graph measures are as follows: global efficiency, local 
efficiency, characteristic path length, clustering coefficient, and 
small-worldness (43). We performed two sample T test on five 
graph metrics of two groups subjects. In Supplementary Figures 
1, 2, and  3, results showed that global efficiency, local efficiency, 
clustering coefficient, and characteristic path length had significant 
differences in slow-5 band. Although there are no obvious differences 
in slow-4 and full-band, the trend is similar to slow-5 band. 

Feature Extraction
In feature extraction section (Figure 1A), 270 nodal features 
[nodal path length (NL), nodal degree (ND), and betweenness 
centrality (BC)] were employed for subsequent analysis. For 
ND, BC, and NL, we utilize 270 features in each band, a total of 
270 × 3 = 810 features. In brief, for a given node i, NL, ND, and 
BC were defined as follows:

 
L

L

Vi
j i V

ij

=
−( )

≠ ∈∑
1

 (1)

FIGURE 1 | EMCI and LMCI classification framework. (A) Raw data preprocessing, feature extraction, and feature selection process. (B) Classification: SVM 
classifier with nested cross validation is implemented for classification.
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where Lij represents the minimum number of edges between node 
i and j, V is the size of a graph, bij is the connection status between 
the node i and j, Sjm, represents the number of shortest path lengths 
between node m and j, and Sjm(i) represents the number of shortest 
paths through the node i between node m and j. Intuitively, path 
length Li measures the speed of the message that passes through 
a given node, and the degree of an individual node Ki is equal 
to the number of links connected to that node, and the greater 
the Bi is, the more important the node i is to the information 
communication in the network, thus reflecting the level of 
interaction in the network.

Feature Selection
As shown in Figure 1A, we selected 270 features from three 
types of network features (NL, ND, and BC) for three frequency 
bands (slow-4, slow-5, full-band) of each subject, respectively. In 
particular, we took integrate feature sets from three bands into a 
new feature named all band for subsequent analysis. There is no 
doubt that feature selection is a wonderful choice that degrades 
redundancy in feature, reduces training-testing time, and 
improves classification performance. Here, three sorts algorithm 
were applied to feature selection.

Minimal Redundancy Maximal Relevance Feature 
Selection Algorithm (mRMR)
Here, we utilized mRMR for feature selection that was first proposed 
by Ding and Peng (44) in 2005. mRMR can commendably solve 
tradeoff problem between feature redundancy and relevance that 
uses mutual information as a feature correlation measure factor 
(45). Given two random variables X and Y, Mutual information 
between them is defined as:

 
I X Y p x y p x y

p x p y
dx dy( , ) ( , )log ( , )

( ) ( )
= ∫∫  (4)

where p(x) and p(y) refers to probabilistic density functions and 
p(x, y) is their joint probability density function. 

Max-Relevance is to search features satisfying that is 
defined as:

 
max ( , ), ( ; )D S c D

S
I x cx S ii

= ∑ ∈
1

 (5)

S refers to feature set with m features {xi} and c is the class. The 
relevance of a feature set S for the class c is defined by the average 
value of all mutual information values between the individual 
feature xi and the class c

Min-Redundancy is defined as:

 

min ( ), ( , ),R S R
S

I x xx x S i ji j
= ∑ ∈

1
2  (6)

Formula is used to select mutually exclusive features. The 
criterion combining the above two constraints is called “minimal-
redundancy-maximal-relevance” (mRMR). The mRMR is 
defined as:

 

mRMR
S

I x c
S

I x x
S

x S i x x S i ji i j
= ∑ − ∑






∈ ∈max 1 1

2( ; ) ( , ),







 (7)

Sparse Linear Regression Feature Selection 
Algorithm Based on Stationary Selection (SS-LR) 
Given a data set T = (X, Y), where X = (x1, x2, … , xn)T ∈ R n × m 
is the sample, Y = (y1, y2, …, yn)T ∈ R n × 1 is its associated sample 
real label, n is the number of samples, and m is the number of 
features of each sample. The model of linear regression can be 
defined as:

 f X Xw( ) =  (8)

where w = (w1, w2, …, wn) ∈ R m × 1 is the coefficient in the linear 
regression, and f(X) is the prediction label vector obtained by 
discriminating the unknown sample. Let L(w) be the loss function of 
linear regression, and then the function is as shown in Equation (9):

 
L w

n
f X Y

w
( ) min || ( ) ||= −1

2
2

 (9)

In order to control the complexity of the model, an L1 
regularization term is usually added after the loss function, and 
the expression after regularization is added:

 
L w

n
f X Y w

w
( ) min || ( ) || | | ||= − +1

2
2

1λ  (10)

where || ||w wi
m

i1 1= ∑ = , λ >0 is a regularization parameter in control 
of the model. As λ increases, the sparseness of the function becomes 
larger, that is, in front of some feature attributes. The coefficient 
becomes 0, that is, linear regression with L1 regularization can be 
used for feature selection. In this paper, the SLEP package (46) 
was used to solve sparse linear regression. To solve the problem of 
proper regularization, we employed subsampling or bootstrapping 
to apply the stability selection for robust feature selection (47). In 
this study, the range is 0.05 < λ < 0.3, and the step size is 0.005.

Fisher Score
Fisher Score is a univariate feature selection algorithm. The 
feature with the identification criteria should satisfy the variance 
of the features in the selected sample of the same category as 
small as possible. On the contrary, the variance between the 
features in the different categories of samples should be as 
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large as possible. It is helpful for high classification accuracy of 
subsequent prediction results. Suppose mi represents the average 
of the i-th feature in all samples, m1i represents the average of the 
i-th feature in the one sample, and m2i represents the average of 
the i-th feature in another sample. The Fisher Score value for each 
feature in a two class problem is defined as (48):

 

FS i n m m n m m
n n

i i i i

i i

( ) ( ) ( )= − + −
+( )

1 1
2

2 2
2

1 1
2

2 2
2σ σ

 (11)

In formula, n1 is the number of samples in the first type of 
sample, n2 is the number of samples in the second type of sample, 
and σ1

2
i  is expressed as the i-th feature in the first type of sample. 

The variance in σ 2
2
i  is expressed as the variance of the i-th feature 

in the second type of sample. 

SVM Classifier
After the feature selection stage, the support vector machine 
(SVM) algorithm was applied to classification that is supervised 
machine learning algorithm using the LIBSVM toolbox (49), with 
radial basis function (RBF) and an optimal value for the penalized 
coefficient C (a constant determining the tradeoff between training 
error and model flatness). The RBF kernel was defined as follows:

 
K X X X X( , ) || ||

1 2
1 2

22
= − −





exp
σ

 (12)

where x1 and x2 are two eigenvectors, and σ is the width parameter 
of the REF kernel. The classification framework flow chart is 
shown in Figure 1B. We used nested cross-validation (CV) to 
obtain unbiased estimates and select the optimal SVM model. 
On the training set, the optimal hyperparameters (C and σ) by 
a grid-search and a 10-fold CV (inner loop) was employed. For 
the outer loop, the leave-one-out cross validation (LOOCV) was 
used and repeated N times (N = 62). We selected one sample as the 
validation set and the remaining samples as feature selection and 
classifier training set for each fold of the outer CV. This operation 
was repeated until all subjects used once as test sample. Finally, 
we used the held-out sample to evaluate the performance of the 
training classifier. Area Under Curve (AUC) is defined as the area 
enclosed by the coordinate axis under the ROC curve. The larger 
the AUC score, the more likely the current classification algorithm 
is to rank the positive samples in front of the negative samples, 
which is a better classification. Most researchers have now adopted 
AUC for evaluating the predictive capability of classifiers since 
AUC is a better performance metric compared to accuracy (50).

To evaluate the performance of the classification results, these 
established measures were defined as follows:

 

Sensitivity TP
TP FN

Accurary TP TN
TP TN FP FN

=
+

= +
+ + +

,

, 

SSpecificity TN
TN FP

=
+

 (13)

where TP, TN, FP, and FN represent true positive, true negative, 
false positive, and false negative, respectively. According to 
traditional rules, we considered a correctly predicted EMCI as a 
true positive and LMCI as a true negative (51).

RESULTS

Classification Results
In the absence of a specific threshold value, the features of the 
four frequency bands (slow-4, slow-5, full-band, and all band) 
are selected by the mRMR, SS-LR, and FS in the Cost = 8–20%. 
Through a series of classification results with threshold, the 
AUC scores in the slow-5 band is significantly higher than that 
in the other frequency bands. By comparison, we found that the 
classification results in the slow-5 band are the best and stable 
under threshold value of Cost = 15%. The following results are 
analyzed and discussed in the threshold of Cost = 15%. The 
receiver operating characteristic (ROC) curves and classification 
results are depicted in Figure 2 and Table 2.

For the mRMR algorithm model, the all band achieved 
a classification accuracy of 82.26% (sensitivity = 72.41%, 
specificity  = 90.91%, AUC = 0.865). The slow-5 resulted in a 
higher accuracy of 83.82% (sensitivity = 86.21%, specificity = 
81.82%, AUC = 0.905). Specifically, we obtained slightly lower 
levels of accuracies for full-band and slow-4 (40.32% and 51.61%, 
respectively) compared to the classification of all-band vs. 
slow-5. For the SS-LR algorithm model, the all-band achieved 
a higher accuracy of 67.74% (sensitivity = 65.52%, specificity = 
69.75%, AUC = 0.789). The slow-5 resulted in accuracy of 64.52% 
(sensitivity = 58.62%, specificity = 69.70%, AUC = 0.713). For 
the FS algorithm model, the all-band achieved a classification 
accuracy of 54.84% (sensitivity = 43.86%, specificity = 63.64%, 
AUC = 0.579). The slow-5 resulted in a higher accuracy of 58.06% 
(sensitivity = 44.83%, specificity = 69.70%, AUC = 0.569).

To prove the effect of the number of selected features, we 
used the top K features (K = 1, 2, ..., 30) for classification. The 
classification performances and AUC scores are shown in 
Figure 3, respectively. The AUC curves appeared stable after the 
top 8 features, and the best classification results are depicted in 
the slow-5 band and all band. The AUC scores of slow-5 band 
and all band are higher than those in the full-band and slow-4 
band. For the slow-5 band, the AUC scores increased as the 
number of selected features increased, and the AUC curve of the 
mRMR algorithm is highest, followed by SS-LR, and the lowest 
is FS. In all band, the highest among AUC curves is mRMR, and 
SS-LR and FS are comparable. The AUC curves for the three 
algorithms in the slow-4 and full band are relatively low and 
relatively messy, which cannot be distinguished by observation. 
In summary, it can be seen from the classification results of three 
feature selection algorithms that suitable algorithm may improve 
the classification effect.

Comparing Classification Results Based on Different 
Feature Selection Methods
In order to compare whether the classification effects of the 
classifiers under the different feature selection algorithms are 
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significantly different, the McNemar test is used to compare 
the classification results of two different feature selection 
algorithms respectively. All statistics were computed with 
Matlab2013a platform.

When the number of features is K=10, the classification 
results and the p value obtained by using the mRMR and SS-LR 
algorithms are shown in Tables 2 and 3, and Figure 4 shows the 
AUC scores with the number of features under the mRMR and 
SS-LR algorithm. As shown in Table 3, we compared the results 
of the four frequency bands using the mRMR and SS-LR feature 
selection algorithms, and only the classification results of the 

slow-5 band showed significant differences (p = 0.006). The AUC 
scores of mRMR were significantly higher than SS-LR (Table 2). 
Using the mRMR algorithm, the slow-5 band achieved the best 
AUC scores (AUC = 0.905), while the all band performed slightly 
lower (AUC = 0.865), and full-band and slow-4 band classification 
results both performed poor. Using the SS-LR algorithm, the 
classification result shows that the all band obtained the best 
results (AUC = 0.789), while the slow-5 band performed slightly 
lower (AUC = 0.713), with poor performance in full-band and 
slow-4 band. From Figure 4, the classification results of the 
two algorithms in full-band and slow-4 band showed almost 

FIGURE 2 | ROC curves for the three algorithms using the top 10 nodal features (A) full-band, (B) slow-4 band, (C) slow-5 band, and (D) all band.

TABLE 2 | Classification results performance of different methods using the top 10 features.

Frequency 
band

mRMR SS-LR FS

ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC

Full-band 40.32 27.59 51.52 0.454 53.23 44.83 60.61 0.523 48.39 34.48 60.61 0.411
Slow-4 51.61 24.14 75.76 0.512 50.00 41.38 57.58 0.512 37.10 34.48 39.39 0.363
Slow-5 83.87 86.21 81.82 0.905 64.52 58.62 69.70 0.713 58.06 44.83 69.70 0.569
All 82.26 72.41 90.91 0.865 67.74 65.52 69.75 0.789 54.84 43.86 63.64 0.579

ACC, accuracy; SEN, sensitivity; SPE, specificity.
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no significant differences with the K value increase and both of 
the AUC scores are relatively low, and can hardly be classified 
correctly. The classification result obtained by using the mRMR 
algorithm in the slow-5 band is obviously better than that of the 
SS-LR algorithm. In the range of 6<K<11, the mRMR curve tends 
to be flat, while as the K value increases, the RMR curve shows 
a gentle decline. The SS-LR curve tends to be flat over the entire 
K value range. The classification result of the mRMR algorithm 
in all band is significantly better than the SS-LR algorithm, and 
the curve of the mRMR algorithm is flatter than the curve of the 
SS-LR algorithm.

We compare the classification performance of the mRMR 
algorithm and the FS algorithm, and the results are shown 
in Table 3 and Figure 5. For the slow-5 band and all band in 
Table  3, the classification results obtained by the mRMR 
algorithm and the FS algorithm showed significant differences, 
and the difference in all band is relatively large (p = 0.00048). 
We found no significant difference between the two algorithms 
in the full-band and slow-4 band. Using the mRMR algorithm, 
the AUC scores of the slow-5 band were higher, the all band were 

second, and the full band and slow-4 band were the worst. In 
four frequency bands, the classification results obtained by the 
mRMR algorithm were better than that of FS. As can be seen 
from Figure 5, in the full-band, the AUC scores   obtained by the 
two algorithms have no significant difference within the all range, 
and there were significant differences in the slow-4 band within 
the several range (K = 17,22,25,26,27). In the slow-5, the AUC 
scores obtained by the mRMR curve was significantly larger than 
the AUC scores of the FS curve, and the mRMR curve shows a 
downward trend with the K value increase, while the FS curve 
tends to be stable. In the all band, the AUC scores obtained by the 
mRMR curve were significantly larger than FS, and both curves 
show a gentle downward trend.

As shown in Table 3, the classification performance obtained 
by the two algorithms has no significant difference in each 
frequency band, but the classification results obtained by the 
SS-LR algorithm was higher than the FS algorithm. As can be 
seen from Figure 6, there were significant differences in AUC 
scores in the full-band (K = 1,2,13,14,15,16), slow-4 (K  = 
14,17,18, ..., 25), and slow-5 (K = 6) band, and there was no 

FIGURE 3 | Subgraphs (A), (B), (C), and (D) represent AUC curves with the number of features K of full-band, slow-4, slow-5, and all band.
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significant difference in all band. Among the four frequency 
bands, the AUC scores are relatively higher in the slow-5 band 
than that in the other three bands. In the slow-5 band, the 
trend of the two curves was relatively flat, and the waveforms 
of the two curves vary in other frequency bands. It can be seen 
from the classification results of different frequency bands that 
dividing the frequency band may improve the classification 
effect (52–56).

In brief, the classification results obtained by using the mRMR 
algorithm in the slow-5 band was the best, followed by the 
classification result obtained by using the mRMR algorithm in 
all band, while the classification results obtained by using the two 
algorithms in the full-band and slow-4 band are relatively poor. 
Hence, the next work is only for discussion and analysis of slow-5 
and all band.

Highly Sensitive Characteristic
This section lists the top 10 features in slow-5 band and all 
band obtained by the mRMR algorithm. Details on the specific 
characteristics of the selected features, the location and number of 
the AAL brain regions, and the number of selected times can be 
found in Tables 4 and 5. The features selected using the mRMR 
algorithm contain all the attributes, where the nodal path length 
(NL) attribute contains five features, and the betweenness centrality 
(BC) attribute contains three features, and nodal degree (ND) 
attribute contains two features. We found that the nodal path length 
attribute contributed 50% to identifying different stages of MCI.

FIGURE 4 | The AUC with the number of features under the mRMR and SS-LR algorithms; * indicates a significant difference in the classification results under the 
two algorithms.

TABLE 3 | Comparison of classification results between different feature 
selection methods.

Frequency 
band

Sig. 
(mRMR VS SS-LR)

Sig. 
(mRMR VS FS)

Sig. 
(SS-LR VS FS)

Full-band 0.1356 0.3827 0.6056
Slow-4 1.000 0.1508 0.0990
Slow-5 0.006 0.0014 0.4795
All 0.0665 0.00048 0.0990

The “Sig.” column gives the p-value. Results with Sig. value < 0.05 are treated as 
nominally significant.
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The features selected (listed in Table 4 and Figure 7) show 
roughly similar features to two frequency bands and include the 
left middle temporal gyrus (l-MTG), the right inferior temporal 
gyrus (r-ITG), the left superior temporal gyrus (l-STG), and the 
right caudate nucleus (r-CAU), left heschl gyrus (l-HES), left 
inferior occipital gyrus (l-IOG), left rolandic operculum (l-ROL), 
left cuneus (l-CUN), right olfactory cortex (r-OLF), and the left 
precentral gyrus (lPreCG). These seven brain regions were 100% 
selected 62 times, and three brain regions were located in the 
temporal lobe region. The remaining three brain regions were 
also selected at a frequency of more than 80%.

In addition, we also list the features selected by the mRMR 
algorithm in the all band. The features of all band are combined 
by the full-band, slow-4, and slow-5 band. As can be seen from 
Table 5, except for one nodal path length attribute feature comes 
from the full-band band, other features are from the slow-5 band, 
and these features from the slow-5 band are consistent with the 
features selected separately from the slow-5 band. The features 
of the slow-4 band are not selected, and most of the features are 
selected from the slow-5 band, indicating that the information in 

the slow-5 band that distinguishes between EMCI and LMCI is 
highly sensitive characteristic.

DISCUSSION

In this paper, we employed the method of constructing brain 
function network to classify EMCI and LMCI in the case of sub-
band. Although the all band contains all features of the three 
frequency band, the best classification effect was achieved in the 
slow-5 band (ACC=83.87%, AUC=0.905) by using the feature 
selection method of mRMR (Table 2). It can be seen that the 
analysis in brain function network properties of the two groups 
in Supplementary Figures 1, 2, and 3, there are significant 
differences in the network attributes of the two groups in the 
slow-5 band, so that both of highly sensitive features and best 
classification results in the slow-5 band can be inferred. These 
results suggest that low frequency obtained by division frequency 
might achieve a better classification result. In addition, compared 
with the SS-LR and FS feature selection algorithms, the features 

FIGURE 5 | The AUC with the number of features under the mRMR and FS algorithms; * indicates a significant difference in the classification results under the two 
algorithms.
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selected by the mRMR algorithm have higher classification 
performance and the classification effect is more stable with 
the number of features increases. It suggests that selecting the 
appropriate feature selection method for the data set can help 
improve the classification accuracy. From the demographic 
data of the two groups (Table 1), there is no significant 
difference between MMSE and CDR, which indicates that the 
neuropsychological scale could not distinguish the patients with 
EMCI and LMCI in the clinic. Our classification framework 
demonstrates that efficient feature extraction and selection can 
effectively improve the classification of EMCI and LMCI.

As shown in Supplementary Figures 1, 2, and 3, we used 
graph theory to calculate and analyze brain network functional 
differences between EMCI and LMCI. The results show that there 
are no significant differences in functional network properties 
between EMCI and LMCI in the slow-4 band. In the full-band, 
the global efficiency of LMCI is significantly higher than EMCI 
in a small part of the threshold, while the characteristic path 
length of LMCI is significantly longer than that of the small 

FIGURE 6 | The AUC with the number of features under the SS-LR and FS algorithms; * indicates a significant difference in the classification results under the 
two algorithms.

TABLE 4 | Distribution of features selected using the mRMR algorithm in the 
slow-5 band.

Networks 
attribution

Number Region (AAL) Selected 
times

Frequency 
(%)

ND 85 Left Middle temporal 
gyrus

62 100

BC 90 Right Inferior temporal 
gyrus

62 100

BC 83 Left Superior temporal 
gyrus

62 100

ND 72 Right Caudate 
nucleus

62 100

NL 79 Left Heschl gyrus 62 100
NL 53 Left Inferior occipital 

gyrus
62 100

NL 17 Left Rolandic 
operculum

62 100

BC 45 Left cuneus 61 >80

NL 22 Right Olfactory cortex 54 >80

NL 1 Left Precentral gyrus 53 >80
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part of the threshold. In the slow-5 band, the global efficiency, 
the local efficiency, and the average clustering coefficient of 
LMCI are significantly higher than those of EMCI, respectively. 
Similarly, the LMCI characteristic path length is significantly 
longer than EMCI under most threshold values. Consistent 
with our findings, it has been shown that LMCI converters 
and EMCI converters showed a decreased path length and 
mean clustering compared with the MCI stables. Specifically, 
EMCI converters showed a decreased clustering coefficient, 
transitivity, modularity, and small-worldness compared with 
the LMCI converters in the Cost = 5–17% threshold range 
(57). These findings align with Zhou’s report (16) that MCI 
converters experience the worst local efficiency during the 
converting period to AD; however, the stables have highest local 
and global efficiency. They suggested that the abnormal brain 
network indicates a compensatory mechanism of local and 
global efficiency in these MCI stables.

As listed in Tables 2 and 3, the classification results show 
that the features selected by the mRMR algorithm have higher 
classification performance than those selected by the SS-LR and 
FS algorithms. For the mRMR algorithm, the classification results 
obtained in slow-5 band is more stable than that of slow-4 and 
full-band. As shown in Table 6, the results of constructing brain 
function network classification EMCI and LMCI in slow-5 band 
is better than that of other studies constructing brain network (26, 
52, 58–62). Meanwhile, most previous methods (63–66) obtained 
accuracy <70% that constructed brain networks only considered 
structural feature. In brief, this study provides a valuable insight 
into the prediction of EMCI and LMCI conversion, and revealed 
that graph measures of resting-state fMRI are a potential 
predictor for classification. Our results suggested that brain 
activity in the slow-5 band carries more disease information and 
the top 10 selected features have high sensitivity for more efficient 
classification, compared with the slow-4 band and the full band. 
High sensitivity of functional network features, the frequently 
band segmentation of the signal, and the choice of the feature 
selection algorithm are critical to the classification.

Previous studies demonstrated connection abnormalities 
in the temporal lobe region in patients with AD (15, 17). Liu 
et al. (67) also reported decreased complexities in lPreCG, STG, 
and MTG in familial AD. In agreement with these studies, we 
found that the temporal lobe region may be affected during the 
early stage of MCI. Specifically, we found that the betweenness 
centrality in the right inferior temporal gyrus (r-ITG) and the 
left superior temporal gyrus (l-STG) and the nodal degree in the 
left middle temporal gyrus were discriminative for separating 
EMCI from LMCI (Tables 4 and 5). The MTG has the highest 
selectivity in the feature selection section. These results are 
consistent with other reports that MTG is the most important 
brain regions in the AD lesion (68, 69). The MTG is located in the 
default network in the resting state network. Studies (70, 71) have 
shown that the default network in the resting state network of 
AD patients is abnormal compared to the normal elderly. Other 
studies have shown that a large amount of Aβ deposition is found 

FIGURE 7 | The location and networks attribution of top 10 brain regions, listed in Table 4, which might be affected in early stage of MCI in sagittal views. The blue 
ball represents BC, the red ball represents NL, and the green ball represents ND.

TABLE 5 | Selected feature distributions in the integrated all band using the 
mRMR algorithm.

Networks
attribution

Frequency
band

Number Region (AAL) Selected 
times

NL Full-band 53 Inferior occipital gyrus 62
ND Slow-5 85 Left Middle temporal 

gyrus
62

BC Slow-5 90 Right Inferior temporal 
gyrus

62

BC Slow-5 83 Left Superior temporal 
gyrus

62

ND Slow-5 72 Right Caudate 
nucleus

62

NL Slow-5 53 Left Inferior occipital 
gyrus

62

NL Slow-5 79 Left Heschl gyrus 61
NL Slow-5 17 Left Rolandic 

operculum
61

BC Slow-5 45 Left cuneus 60
NL Slow-5 22 Right Olfactory cortex 23
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in the temporal lobe region, indicating that this brain region is an 
important region in the development of AD disease (14). All of 
these results suggest that changes in the structure and function 
of the MTG region are more sensitive to the development of AD 
disease. Some of other sensitive brain regions, such as l-CUN and 
r-ITG, were also reported in previous study using PE method to 
analyze the complexity of the same ADNI dataset (72). Studying 
the structural and functional network results of AD suggests that 
cognitive impairment in patients may be caused by abnormal 
connections between different brain regions in the temporal 
lobe (70, 73). The area of the ITG plays an important role in 
maintaining language fluency (74). Hojjati and colleagues (52) 
demonstrated capability of rs-fMRI to predict conversion from 
MCI to AD by identifying affected brain regions (i.e., l-CUN, 
l-ROL, l-STG, r-CAU, r-ITG) underlying this conversion, and 
they proposed the ITG is an essential area in the verbal fluency 
circuit. Therefore, they suggested that these results might be 
indicative of disruption in communication between the ITG and 
other regions involved in this cognitive function in early stage 
of AD. For the caudate nucleus (CUN) region, Persson’s study 
found that larger caudate nucleus volume in AD patients and 
further discussed this region possibly serving as a mechanism 
for temporary compensation (75). Consistent with this structural 
MRI finding, our results revealed the functional connection 
abnormalities of r-CAU in early AD. Niu et al. (69) revealed 
significant differences in the OLF.R, l-IOG, l-MTG, and other 
brain regions on multiple time scales for four stages of AD. 
Khazaee and colleagues (19) suggested that patients with AD 
experience disturbance of l-ROL, r-ITG, and l-STG in their brain 
network as AD progresses. Our findings converge nicely with 
what has been suggested by the previous MRI studies (76–78), 
and these selected brain regions have been shown to be related 
with MCI conversion.

In summary, the highly sensitive characteristic found 
that the features selected using the mRMR algorithm in the 
integrated all band and slow-5 band are overlapping, indicating 
that the information contained in the slow-5 band is more 
distinguishable. Moreover, selected brain regions carry more 

disease information with highly sensitive characteristic leading 
to more efficient classification. The important role of temporal 
lobe in MCI disease has been widely recognized. We suggested 
that the other regions (Right caudate nucleus, Left Heschl gyrus, 
Left Inferior occipital gyrus, Left Rolandic operculum, etc.) 
deserve researchers pay attention to explore the role of these 
brain regions in the MCI disease.

CONCLUSION

In this study, we investigated the efficacy of a classification 
framework to distinguish individuals with EMCI and LMCI by 
using the effective features derived from functional brain network 
of three frequency bands during Resting States. Without requiring 
other new biomarkers, our approach shows that the functional 
network features selected by mRMR algorithm improves the 
discrimination between EMCI and LMCI, compared with those 
selected by the SS-LR and FS algorithms. Moreover, the selected 
brain regions and frequency band are interpretable and consistent 
with previous studies. By comparing classification results, we 
found that the selected slow-5 band shows more stable and better 
performances compared with other bands. Ultimately, such a 
classification framework for the whole brain overall organization 
could substantially extend our understanding on the classification 
of MCI, shedding light on the novel potential diagnostic markers 
(highly sensitive features) located brain regions. This study has 
several limitations. A larger sample size and the consideration of 
including other degrees of severity in AD series and dementias 
in future work are essential to evaluate the variability and 
stability of functional networks for classification results. Another 
limitation related to network characteristics is the construction 
of undirected networks, ignoring the direction of information 
dissemination. Moreover, other findings indicated that any 
comparison of network parameters across studies must be made 
with reference to the spatial scale of the nodal parcellation (79); 
hence, we will evaluate the results of Power-264 brain regions for 
our method. The multimodality classification approach yields 

TABLE 6 | Classification performance of different methods to distinguish different stages of MCI.

Article Method Cohort ACC (%) SEN (%) SPE (%) AUC

This paper Proposed EMCI/LMCI (33/29) 83.87 86.21 81.21 0.905
Biao Jie (26) Spatio-temporal interaction patterns of 

dynamic connectivity networks
EMCI/LMCI (56/43) 78.8 74.4 82.1 0.783

Seyed Hani Hojjatia (52) Graph theory and machine learning approach 
(mRMR, FS) 

MCI-C/MCI-NC(18/62) 91.4 83.24 90.1 N/A

Mohammed Goryawala (58) fMRI volumes and neuropsychological scores EMCI/LMCI (114/91) 73.6 74.3 72.7 N/A
Heung-Il Suk (59) 93 features from a MR image and the same 

dimensional features from a FDG-PET image.
MCI-C/MCI-NC (43/56) 74.04 58 82.67 0.696

Zhang and Shen (60) MRI, PET and cognitive scores, 
Leave-one-out cross-validation

MCI-C/MCI-NC (38/50) 78.4 79.0 78.0 0.768

Moradi et al. (61) MRI, age and cognitive measures
10-fold cross-validation

sMCI/pMCI (100/164) 81.72 86.65 73.64 0.902

Ardekani et al. (62) Hippocampal volumetric integrity (HVI) from 
structural MRI scans
RF with 5,000 trees

sMCI/pMCI (78/86) 82.3 86.0 78.2 N/A

The best multivariate predictors of MCI conversion are shown for each study. ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the curve; FDG-PET, 
fluorodeoxyglucose positron emission tomography; RF, Random forest.
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statistically significant improvement (at least 7.4%) in accuracy 
over using each modality independently (39). Further studies are 
needed to integrate information from structural and functional 
connectivity networks for improving classification performance.
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